FORTRAN CODE FOR THE THREE-DIMENSIONAL ISING MODEL

Michael CREUTZ

Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

and

K.J.M. MORIARTY

Institute for Computational Studies, Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia B3H 4H8, Canada

Received 25 April 1985; in revised form 15 August 1985

PROGRAM SUMMARY

Title of program: MICROIS

Catalogue number: AADW

Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland (see application form in this issue)

Computer: CDC CYBER 170-730 (dual processor); Installa-

tion: Dalhousie University Computer Center

Operating system: CDC NOS 2.2

Programming language used: FORTRAN-77

High speed storage required: 25 Kwords

Number of bits in a word: 60

Peripherals used: terminal, line printer

Number of lines in combined program and test deck: 452

Keywords: solid state Ising model, phase transitions, critical exponents, correlation functions, magnetization, microcanonical methods

Nature of the physical problem

The program calculates equilibrium distributions for the ele-

mentary magnets in a large three-dimensional Ising model system so that the critical inverse temperature and critical exponents can be measured.

Method of solution

An essentially deterministic technique called the microcanonical method with demons [1] is used to obtain equilibriated elementary magnetic configurations. Spin correlations at a variety of separations can be measured.

Restrictions on the complexity of the program

In order to reduce the errors on our measurements, reasonably long run times are required which is the only restriction on the use of the program. Primary memory is not a restriction as very little memory is required.

Typical running time

The test run on an $8^2 \times 120$ lattice with 10 iterations through the lattice, each with 10 sweeps, took 3.2 s on the CDC CYBER 170-730.

Reference

M. Creutz, Phys. Rev. Lett. 50 (1983) 1411.
 G. Bhanot, M. Creutz and H. Neuberger, Nucl. Phys. B235 [FS11] (1984) 417.

LONG WRITE-UP

1. Introduction

The Ising model is one of the simplest theoretical models constructed in an attempt to simulate the phenomenon of phase transitions in general and the ferromagnetic phase transition in particular. This model can be solved analytically in two dimensions [1] and exhibits the kind of behavior shown by ferromagnets: viz., above a certain temperature, called the critical temperature, the elementary magnets in a large sample tend to be in a disordered state, so that there is no net magnetization, whereas, below that temperature, the magnets tend to order themselves parallel to one another, with the effect that there is a net magnetization. The more realistic three-dimensional Ising model has so far eluded analytic solution, though various parameters have been estimated by approximation techniques. Some of these approximation methods are analytical and can be implemented by hand. but nowadays the trend is to simulate the model on a computer and thereby extract its properties. As these properties can be more reliably determined for larger systems, i.e., for larger numbers of interacting elementary magnets, it is obvious that for better results there is a need for larger computation times (and greater memory).

We work with the Ising model in 3 dimensions. On any site i of a 3-dimensional lattice is a spin variable s_i which takes values from the set $\{1, -1\}$. The interaction of these spins is given by the Hamiltonian

$$H = \sum_{\{i,j\}} s_i s_j,$$

where $\{i, j\}$ denotes the set of all nearest neighbor pairs of sites. The program releases the demons, each of which carry small amounts of energy around the lattice. As with the usual Monte Carlo simulations, the path through the lattice is arbitrary. We hop through the lattice in an orderly manner with big steps of a few tens of sites. Upon reaching a site a demon attempts to flip the corresponding spin. If the change in the spin energy can be absorbed by the demon, it accepts the flip. If, on the other hand, the resulting change in the

demon energy would take it out of the allowed range, the spin flip is rejected.

What are the quantities that we are measuring? There are various parameters associated with the ferromagnetic phase transition, not all of equal importance. The critical temperature itself, as well as the value of the internal energy at this temperature are relatively unimportant quantities because they are specific to the model and are not related to any physical systems. They are nevertheless of some interest because they have been estimated by other methods, so that a comparison can be made. Moreover, they are needed for calculating some of the more important quantities. These are the critical exponents. A full discussion of these can be found in ref. [2].

In a previous paper [3], a program for carrying out three-dimensional Ising model calculations with the microcanonical method with demons [4] was presented. However, this program was very machine dependent being partly written in the CDC assembly language code COMPASS. Thus, the program was not transportable. After some encouragement from our colleagues, we wish to present a fully transportable code written in standard ANSI FORTRAN-77. A discussion of this code will be the object of the present paper.

2. Code description

The program consists of the following routines: MICROIS (main program), BETA, ENERGY, AMIX, IBCOUNT, MONTE, CORX and CORZ (see the flow chart in fig. 1). These routines have the following functions:

- MICROIS is the main driver routine. This
 routine initializes the program parameters such
 as the lattice size and the total energy per bond,
 initiates the simulation and measuring procedures.
- 2) BETA finds the inverse temperature β given an average demon energy E.
- 3) ENERGY measures the lattice energy.
- 4) AMIX randomly permutes bits.

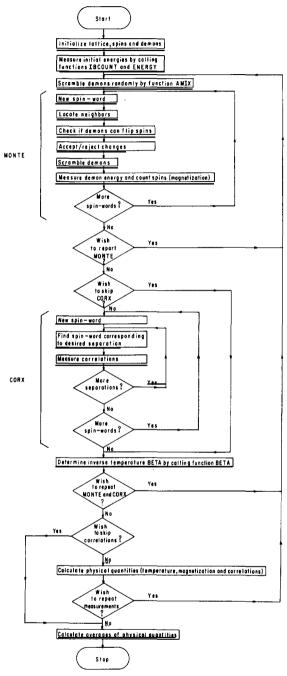


Fig. 1. Schematic flow chart of the three-dimensional Ising model program.

- 5) IBCOUNT counts the bits that are set in the bit string Y.
- 6) MONTE carries out one sweep over the lattice.

The demon energy and magnetization are measured.

- 7) CORX counts the antiparallel spins separated by N sites in the x-direction.
- 8) CORZ counts the antiparallel spins separated by N sites in the z-direction.

A listing of the code, together with detailed comments, is presented at the end of the paper. A brief description of these routines was given in ref. [3].

The CDC CYBER 170-730, on which the code was developed, is a 60-bit word length machine. The industrial standard is now words of 64 bits. To convert the code at the end of the paper from a 60-bit to a 64-bit word length, the user must make the following alterations:

line 22	120	becomes	128
line 49	45	becomes	48
line 50	120	becomes	128
line 52	30	becomes	32
line 57	60	becomes	64
line 62	59	becomes	63
line 72	45	becomes	48
line 77	120	becomes	128
line 141	60	becomes	64
line 146	60	becomes	64
line 147	30	becomes	32
line 159	30	becomes	32
line 265	59	becomes	63
line 282	180	becomes	192
line 295	30	becomes	32
line 300	60	becomes	64
	60	becomes	64
line 319	15	becomes	16
line 322	15	becomes	16
line 323	30	becomes	32
	45	becomes	48
line 373	58	becomes	62
line 383	23	becomes	27

Subroutine IBCOUNT is a very compute intensive part of the code being called very often. To obtain a really efficient code on a scalar computer, this routine should be written in assembly language. A COMPASS version of this subroutine is contained in ref. [2]. Some alternate FORTRAN versions can be found in the appendix.

Some preliminary results of possible measure-

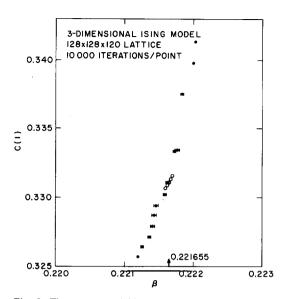


Fig. 2. The nearest neighbor correlation in the three-dimensional Ising model (128×128×120 lattice) near the critical inverse temperature as a function of the inverse temperature. The open circles represent the results of the Santa Barbara Ising Model machine [5] using a 64³ lattice.

ments of the three-dimensional Ising model on a $128 \times 128 \times 120$ lattice at the critical inverse temperature $\beta_c = 0.2217$ are shown in figs. 2-4. The results were obtained on a CDC 7600. These results are included to indicate the potential of the method. In fig. 2 we present data on the nearest neighbor correlation near the critical inverse temperature. Each data point is the result of $10\,000$ iterations through the lattice with the averaging procedure carried out over the last 9000 iterations. The error bars are in the inverse temperature β because of the use of the microcanonical method. Fig. 3 shows the correlation of spins near the critical inverse temperature. At the critical inverse temperature β_c , this is expected to behave like

$$C(\beta_c) \sim 1/r^{1+\eta}$$

where η is a characteristic parameter of the model. The results for $\eta = 0.0$ and 0.04 are shown in fig. 3. The ratios of correlation functions near the critical inverse temperature are shown in fig. 4. The value corresponding to $\eta = 0.04$ is also shown.

Our present plans involve running our program for anything up to 1 M iterations through large

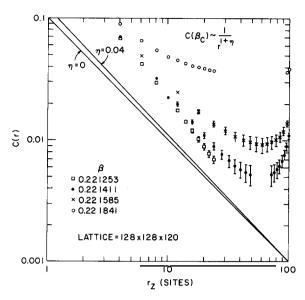


Fig. 3. The correlation functions for separation in the three-dimensional Ising model ($128 \times 128 \times 120$ lattice) near the critical inverse temperature as a function of the site separation r_r .

lattices in order to obtain high-grade statistics and thus allow us to make accurate measurements of the critical inverse temperature and the critical exponents. Results on this work will be reported shortly.

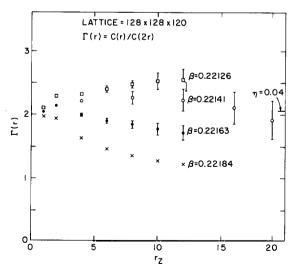


Fig. 4. The ratio of correlation functions in the three-dimensional Ising model $(128 \times 128 \times 120 \text{ lattice})$ near the critical inverse temperature for separations r and 2r as a function of site separation r.

For an alternate approach to the 3-dimensional Ising model, see ref. [6].

Acknowledgements

We would like to thank P. Mitra and M. O'Brien for useful advice in setting up this code. We would also like to thank Dalhousie University Computer Center for the granting of time on their CDC CYBER 170-730 where this calculation was undertaken. This research was also carried out in part under the auspices of the US Department of Energy under contract No. DE-AC02-76CH00016 and the Natural Science and Engineering Research Council of Canada under grant NSERC A8420.

Appendix

For completeness, we give an alternate but slower version of the subroutine IBCOUNT(Y), which is

*	FUNCTION IBCOUNT(Y) FUNCTION IBCOUNT(Y) COUNTS SET BITS IN Y	0304 0305 0306 0307
	N=1 IBCOUNT=0 X=MASK(30) I=SHIFT(AND(Y,X),30)	0308 0309 0310 0311 0312
	1 IF(I.LE.1)GOTO 3 2 J=SHIFT(I,-1) 1BCOUNT=IBCOUNT+I-J-J 1-J 1-J 1-J 1-J 1-J 1-J 1-J 1-J 1-J	0312 0313 0314 0315 0316
	<pre>IF(1.6T.1)GDTD 2 3 IBCOUNT-IBCOUNT+1 IF(N.LT.0)GDTD 4 I=AND(Y,COMPL(X)) N=-1 GOTD 1</pre>	0317 0318 0319 0320 0321
	4 RETURN END	0322 0323 0324

where, when going from a 60-bit to a 64-bit word length machine, the 30 in lines 310 and 311 would become 32. Another version would replace the body of this routine by the code

```
IBCOUNT = 0
DO 1 N = 1,60
IBCOUNT = IBCOUNT + AND(1, Y)
1 Y = SHIFT(Y, 1)
RETURN
END.
```

For a 64-bit word length machine, the loop control variable N goes from 1 to 64.

References

- L. Onsager, Phys. Rev. 65 (1944) 117.
 T.D. Schultz, D.C. Mattis and E.H. Lieb, Rev. Mod. Phys. 36 (1964) 856.
- [2] M. Creutz, P. Mitra and K.J.M. Moriarty, Computer Investigations of Three-Dimensional Ising Model, Brookhaven National Laboratory Preprint BNL-34741; J. Stat. Phys. (to be published).
- [3] M. Creutz, P. Mitra and K.J.M. Moriarty, Comput. Phys. Commun. 33 (1984) 361.
- [4] M. Creutz, Phys. Rev. Lett. 50 (1983) 1411.
 G. Bhanot, M. Creutz and H. Neuberger, Nucl. Phys. B235
 [FS11] (1984) 417.
- [5] R.B. Pearson, J.L. Richardson and D. Toussaint, J. Comput. Phys. 51 (1983) 241.
 M.N. Barber, R.B. Pearson, D. Toussaint and J.L. Richardson, Santa Barbara report NSF-ITP-83-144 (1983).
- [6] G.S. Pawley, R.H. Swendsen, D.J. Wallace and K.G. Wilson, Phys. Rev. B29 (1984) 4030.

PROGRAM LISTING

```
MAJOR LOOP STARTS
                                                                                                                                                                                                                                                                                                                                                                    0103
                                                                                                                                                            0001
0002
0003
    PROGRAM MICROIS
                                                                                                                                                                                                            DO 11 MEAS=1.NBATCH
   THIS IS A FORTRAN PROGRAM FOR STUDYING CORRELATION FUNCTIONS OF THE THREE-DIMENSIONAL ISING MODEL ON A SIMPLE CUBIC LATTICE BY THE MICROCANONICAL METHOD FOR DETAILED INFORMATION AND REFERENCES SEE THE PAPER "FORTRAN CODE FOR THE THREE-DIMENSIONAL ISING MODE".

BY M. CREUTZ, DEPARTMENT OF PHYSICS, BROOKHAVEN NATIONAL LABORATORY, UPTON, LONG ISLAND, NEW YORK, 11973 AND K.J.M. MODELATY, INSTITUTE FOR COMPUTATIONAL STUDIES, DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTING SCIENCE, DALHOUSIE UNIVERSITY, HALIFAX, NOVA SCOTIA BSH 4HB, CANADA
                                                                                                                                                                                                            PRINT*
                                                                                                                                                                                                                                                                                                                                                                   0106
                                                                                                                                                                                                           PRINT*
PRINT*
PRINT*, AVERAGE OVER ',NIT,' ITERATIONS'
+,',EACH WITH ',NSWEEP,' SWEEPS '
                                                                                                                                                            0004
                                                                                                                                                                                                                                                                                                                                                                    0107
                                                                                                                                                                                                                                                                                                                                                                   0108
                                                                                                                                                            0006
                                                                                                                                                                                                                                                                                                                                                                   0110
                                                                                                                                                            0008
                                                                                                                                                                                                                                                                                                                                                                   0111
                                                                                                                                                                                                     DO 6 I=1,3
6 ICORR(I)=0
                                                                                                                                                            0010
                                                                                                                                                                                                                                                                                                                                                                   0114
                                                                                                                                                            0012
0013
0014
0015
                                                                                                                                                                                                            NOTE THE TIME -- MONITOR SPEED OF PROGRAM
                                                                                                                                                                                                                                                                                                                                                                   0118
                                                                                                                                                            0016
0017
                                                                                                                                                                                                            DO 8 ITER=1,NIT
                                                                                                                                                                                                                                                                                                                                                                   0120
0121
0122
                                                                                                                                                            0018
                                                                                                                                                                                                            DO 7 NSW=1.NSWEEP
                          1. INITIALIZING THE PROGRAM
                                                                                                                                                            0019
                                                                                                                                                            0020
0021
0022
                                                                                                                                                                                                            SCRAMBLE DEMONS RANDOMLY DMN1=AMIX(DMN1)
                                                                                                                                                                                                                                                                                                                                                                   0123
   THE VARIABLES IX.1Y DETERMINE THE LATTICE SIZE, WHICH IS IX*1Y*120
ARRAY SPIN SHOULD HAVE DIMENSION 2*1X*1Y
NOTE THAT THIS HOLDS ALSO FOR FUNCTION EMERGY
AND SUBROUTINES MONTE CORX. CORZ
THIS PROGRAM MEASURES CORRELATIONS FOR 3 SEPARATIONS
N(1),N(2),N(3) ARE TO BE SET TO THE DESIRED SEPARATIONS
                                                                                                                                                                                                                                                                                                                                                                   0124
                                                                                                                                                                                                             DMN2=AMIX(DMN2)
                                                                                                                                                            0023
                                                                                                                                                                                                                                                                                                                                                                   0126
                                                                                                                                                            0024
0025
0026
0027
0028
0029
0030
0031
                                                                                                                                                                                                            CALL MONTE(DMN1,DMN2,SPIN,IX,IMAX,1SUM,IMAG)
                                                                                                                                                                                                     IED=IED+ISUM
7 IS=IS+IMAG
                                                                                                                                                                                                                                                                                                                                                                   0130
                                                                                                                                                                                                                                                                                                                                                                   0132
0133
0134
0135
    CORRELATIONS IN X-DIRECTION ARE BEING MEASURED CORRELATIONS IN Z-DIRECTION MAY BE MEASURED BY USING SUBROUTINE CORZ PROVIDED(BUT NOT USED HERE)
                                                                                                                                                                                                            TE(MEAS.EQ.1)GOTO 8
                                                                                                                                                                                                            CALL CORX(SPIN, IMAX, N, IC)
                                                                                                                                                            0031
0032
0033
0034
    DIMENSION SPIN(128)
DIMENSION N(3),IC(3),CS(3),ICORR(3),CORR(3)
                                                                                                                                                                                                            ICORR(1)=ICORR(1)+IC(1)
ICORR(2)=ICORR(2)+IC(2)
ICORR(3)=ICORR(3)+IC(3)
CONTINUE
                                                                                                                                                            0035
                                                                                                                                                            0036
0037
0038
0039
                                                                                                                                                                                                                                                                                                                                                                   0139
                                                                                                                                                                                                                                                                                                                                                                   0140
0141
0142
0143
    N(1)=IX/4
N(2)=IX/2
N(3)=(IX+IY*IY)/2
                                                                                                                                                                                                            PATE=IMAX*NIT*NSWEEP*60/(1.E6*(SECOND()-T))
PRINT*,' RUNNING AT ',RATE,' MFLIPS'
                                                                                                                                                            0040
0041
0042
0043
0044
                                                                                                                                                                                                                                                                                                                                                                    0144
                                                                                                                                                                                                            CALCULATE AV. DEMON ENERGY AND MAGNETIZATION
     IMAX=2*TX*TY
                                                                                                                                                                                                            ED=IED/(60.*NSWEEP*NIT*IMAX)
S=1.-IS/(30.*NSWEEP*NIT*IMAX)
                                                                                                                                                                                                                                                                                                                                                                   0147
                          2. INITIALIZING THE SPINS
                                                                                                                                                            0045
0046
0047
                                                                                                                                                                                                                                                                                                                                                                   0148
0149
0150
0151
0152
0153
0154
     PARAMETER E DETERMINES APPROX. TOTAL ENERGY PER BOND
                                                                                                                                                                                                            DETERMINE BETA AND SISJ
                                                                                                                                                                                                            BET=BETA(ED)
SISJ=1.-ETOT+4*ED/(3.*IMAX)
PRINT*,' BETA= ',BET,' SISJ=
PRINT*,' MAGNETIZATION= ',S
                                                                                                                                                            0048
    E=.655

IE=2*INT(E*IMAX*45)

KO=(IE-120-IMAX)/16

DO 1 I=1,IMAX

SPIN(I)=MASK(30)

IM4=IMAX/4
                                                                                                                                                            0049
                                                                                                                                                            0050
                                                                                                                                                            0051
0052
0053
                                                                                                                                                                                                                                                                                                                                                                    0155
                                                                                                                                                                                                            IF (MEAS.EQ.1)GOTO 11
OTHERWISE CALCULATE CORRELATIONS
                                                                                                                                                                                                                                                                                                                                                                   0156
    IMA= IMAX/4

DO 2 1=4,IMAX,4

DO 2 1=4,IMAX,4

SPIN(1)=SHIFT(SPIN(1),K1)

SPIN(1-3)=SHIFT(SPIN(1-3),60-K1)

K2-4-MOD(K0,IM4)

IF(K2.E(0.)060T0 4

DO 3 1=4,K2,4

SPIN(1)=SHIFT(SPIN(1),1)

SPIN(1)=SHIFT(SPIN(1),1)

SPIN(1-3)=SHIFT(SPIN(1-3),59)

NFLIP=2-MINO(2-1X,K2,IMAX-K2)+IMAX+16*(K1*IM4+K2/4)
                                                                                                                                                            0054
                                                                                                                                                            0055
0056
0057
                                                                                                                                                                                                                                                                                                                                                                   0158
                                                                                                                                                                                                      DO 9 I=1,3
9 CORR(I)=1.-ICORR(I)/(30.*NIT*IMAX)
                                                                                                                                                                                                            PRINT*, 'CORR(IX/4)= ',CORR(1)
PRINT*, 'CORR(1X/2)= ',CORR(2)
PRINT*, 'CORR(IX/2,IY/2)= ',CORR(3)
                                                                                                                                                             0058
                                                                                                                                                                                                                                                                                                                                                                   0161
                                                                                                                                                            0059
0060
0061
0062
                                                                                                                                                                                                                                                                                                                                                                   0162
                                                                                                                                                                                                                                                                                                                                                                   0163
0164
0165
                                                                                                                                                                                                            ACCUMULATE RESULTS OF MEASUREMENT
                                                                                                                                                            0063
0064
0065
                                                                                                                                                                                                                                                                                                                                                                   0166
                                                                                                                                                                                                                                                                                                                                                                   0167
0168
0169
                                                                                                                                                                                                            BS=BS+BET
BS2=BS2+BET**2
AMS=AMS+S
AMS2=AMS2+S**2
                            3. INITIALIZING THE DEMONS
                                                                                                                                                             0066
      DMN1=MASK(([E-NFLIP)/2)
DMN2=0.
                                                                                                                                                            0067
0068
0069
                                                                                                                                                                                                                                                                                                                                                                    0171
                                                                                                                                                                                                                                                                                                                                                                   0172
0173
0174
                                                                                                                                                                                                    DO 10 M=1,3
CS(M)=CS(M)+CORR(M)
10 CS2(M)=CS2(M)+CORR(M)**2
                             4. MEASURING INITIAL ENERGIES
                                                                                                                                                             0070
    ED=IBCOUNT(DMN1)/(45.*IMAX)
E=ENERGY(SPIN,IX,IMAX)
ETOT=E+ED
PRINT*
DDTM**
                                                                                                                                                            0071
                                                                                                                                                                                                                                                                                                                                                                    0175
                                                                                                                                                                                                             CALCULATE RATIOS OF CORRELATIONS
                                                                                                                                                             0074
                                                                                                                                                                                                                                                                                                                                                                    0178
                                                                                                                                                            0075
                                                                                                                                                                                                              R1=R1+CORR(1)/CORR(2)
                                                                                                                                                            0075
0076
0077
      PRINT*, LATTICE SIZE: ',IX,' X ',IY,' X 120' PRINT*
                                                                                                                                                                                                            R1=R1=CURK(1)/CORR(2)
R1E=R1E+(CORR(1)/CORR(2))**2
R2E=R2E+(CORR(2)/CORR(3))**2
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                    0179
                                                                                                                                                                                                                                                                                                                                                                    0180
0181
                                                                                                                                                            0078
                                                                                                                                                            0079
                                                                                                                                                                                                                                                                                                                                                                    0182
                                                                                                                                                                                                    11
                                                                                                                                                                                                                                                                                                                                                                   0183
0184
0185
0186
0187
                                                                                                                                                             0080
      PRINT*,' ELATT= ',E,' EDEM= ',ED
PRINT*,' ETOT= ',ETOT
                                                                                                                                                                                                              MAJOR LOOP OVER
                                                                                                                                                             0082
                                                                                                                                                                                                                                6. FINAL CALCULATIONS
                            5. SIMULATION
                                                                                                                                                             0083
                                                                                                                                                            0084
0085
0086
0087
      THREE ITERATION PARAMETERS ARE INVOLVED:
SWEEP NSWEEP TIMES, MEASURING DEMON ENERGY AND
MAGNETIZATION WITHIN MONTE(THIS CAN BE SUPPRESSED
BY REMOVING TWO LINES IN MONTE)
THEN MEASURE CORRELATIONS(EXCEPT AFTER IST SET OF SWEEPS)
CALCULATE AVERAGES AFTER NIT HEASUREMENTS
REPEAT NBATCH TIMES AND FIND GRAND AVERAGES
                                                                                                                                                                                                              BS=BS/ABATCH
BS2=SQRT((BS2/ABATCH-BS**2)/(ABATCH-1.))
AMS=AMS/ABATCH
AMS2=SQRT((AMS2/ABATCH-AMS**2)/(ABATCH-1.))
                                                                                                                                                                                                                                                                                                                                                                    0188
                                                                                                                                                                                                                                                                                                                                                                   0189
0190
0191
0192
                                                                                                                                                            0088
                                                                                                                                                            0089
0090
0091
                                                                                                                                                                                                                                                                                                                                                                    0193
0194
0195
0196
0197
                                                                                                                                                                                                              PRINT*
PRINT*, *** AVERAGES AFTER DISCARDING FIRST BATCH *** '
PRINT*, ' AV. BETA= ',BS,' +/- ',BS2
PRINT*, ' AV. MAG,= ',AMS,' +/- ',AMS2
                                                                                                                                                             0092
                                                                                                                                                            0093
0094
0095
0096
0097
      NSWEEP=10
NIT=10
NBATCH=5
                                                                                                                                                                                                      DO 12 M=1,3
CS(M)=CS(M)/ABATCH
12 CS2(M)=SQRT((CS2(M)/ABATCH-CS(M)**2)/(ABATCH-1.))
                                                                                                                                                                                                                                                                                                                                                                    0198
0199
0200
0201
      ABATCH=1.*NBATCH-1.
BS=BS2=AMS=AMS2=0.
R1=R2=R1E=R2E=0.
                                                                                                                                                             0098
                                                                                                                                                                                                              PRINT*,' AV. CORR(IX/4)= ',CS(1),' +/- ',CS2(1)
PRINT*,' AV. CORR(IX/2)= ',CS(2),' +/- ',CS2(2)
PRINT*,' AV. CORR(IX/2,1Y/2)= ',CS(3),' +/- ',CS2(3)
                                                                                                                                                                                                                                                                                                                                                                     0202
                                                                                                                                                                                                                                                                                                                                                                    0203
DO 5 I=1,3
5 CS(I)=CS2(I)=0.
```

```
DI-DI/ARATCH
                                                                                                                                                                                                                                                                                                                                                                     0304
                                                                                                                                                                                                              FUNCTION IBCOUNT(X)
      RI=RI/ABATCH
R1E=SQRT((R1E/ABATCH-R1**2)/(ABATCH-1.))
R2E=SQRT((R2E/ABATCH-R2**2)/(ABATCH-1.))
                                                                                                                                                                                                                                                                                                                                                                     0305
0306
0307
                                                                                                                                                                                                              THIS FUNCTION RETURNS THE NUMBER OF SET BITS IN WORD X
                                                                                                                                                             0209
                                                                                                                                                                                                                                                                                                                                                                     0308
     PRINT*,' CORR(IX/4)/CORR(IX/2)= ',R1,' +/- ',R1E
PRINT*,' CORR(IX/2)/CORR(IX/2,IY/2)= ',R2,' +/- ',R2E
PRINT*
PRINT*
                                                                                                                                                                                                              IT IS ANKWARD TO DO THIS IN FORTRAN; IT WOULD BE BETTER TO WRITE AN EQUIVALENT FUNCTION IN ASSEMBLY LANGUAGE
                                                                                                                                                             0213
                                                                                                                                                                                                                                                                                                                                                                     0312
                                                                                                                                                                                                              FOR A 64-BIT MACHINE, CHANGE 15 TO 16, 30 TO 32, 45 TO 48 AND CHANGE 100001000100001000010CTAL TO 1000100010001HEX
                                                                                                                                                                                                                                                                                                                                                                     0313
      STOP
END
                                                                                                                                                                                                                                                                                                                                                                     0314
                                                                                                                                                                                                                                                                                                                                                                     0315
                                                                                                                                                              0216
0217
                                                                                                                                                                                                                                                                                                                                                                     0316
                                                                                                                                                                                                               IBCOUNT=0
                                                                                                                                                                                                                                                                                                                                                                     0317
0318
                                                                                                                                                                                                               Y=X
DO 1 N=1,15
                                                                                                                                                                                                                                                                                                                                                                     0319
                                                                                                                                                                                                            DO 1 N=1,15
| HECOUNT= HECOUNT+AND(0"1000010000100001",Y)
| Y=SHIFT(Y,1)
| IBCOUNT=AND((IBCOUNT+SHIFT(IBCOUNT,15),127)
| X=SHIFT(IBCOUNT,30)+SHIFT(IBCOUNT,45),127)
                                                                                                                                                              0221
                                                                                                                                                                                                                                                                                                                                                                     0320
                                                                                                                                                             0222
0223
0224
                                                                                                                                                                                                                                                                                                                                                                     0321
      FUNCTION BETA(E)
      FINDS BETA GIVING AVERAGE DEMON ENERGY E
                                                                                                                                                                                                                                                                                                                                                                     0323
                                                                                                                                                                                                               RETURN
END
                                                                                                                                                              0225
                                                                                                                                                                                                                                                                                                                                                                     0324
      F(X)=(X+2*X**2+3*X**3)/(1+X+X**2+X**3)
       XL=0
XH=1.5
                                                                                                                                                                                                                                                                                                                                                                     0326
                                                                                                                                                              0229
                                                                                                                                                                                                                                                                                                                                                                     0327
DO 1 N=1,50

XN=(XL+XH)*.5

FN=F(XN)

IF (FN.GT.E)XH=XN

1 IF (FN.LT.E)XL=XN
                                                                                                                                                                                                                                                                                                                                                                     0328
                                                                                                                                                                                                               SUBROUTINE MONTE(DMN1,DMN2,SPIN,IX,IMAX,ISUM,IMAG)
                                                                                                                                                              0232
                                                                                                                                                                                                                                                                                                                                                                     0330
                                                                                                                                                                                                              MONTE CARRIES OUT ONE SWEEP OVER THE LATTICE DEMONE ENERGY AND MAGNETIZATION ARE MEASURED IN LINES ISLMM-ISUM+1. AND IMAG=IMAG+... THESE LINES MAY BE DROPPED TO SPEED UP SIMULATION
                                                                                                                                                              0233
                                                                                                                                                                                                                                                                                                                                                                     0331
                                                                                                                                                                                                                                                                                                                                                                     0332
0333
0334
                                                                                                                                                             0234
0235
       BETA=-ALOG(XN)/4
                                                                                                                                                              0236
                                                                                                                                                              0237
                                                                                                                                                                                                                                                                                                                                                                     0335
       RETURN
END
                                                                                                                                                              0238
0239
                                                                                                                                                                                                               DIMENSION SPIN(128),SMBR(6),MBR(4)
CHANGE DIMENSION OF SPIN IF NECESSARY
                                                                                                                                                                                                                                                                                                                                                                     0336
0337
                                                                                                                                                              0240
                                                                                                                                                                                                                                                                                                                                                                     0338
                                                                                                                                                                                                                                                                                                                                                                     0339
0340
0341
0342
                                                                                                                                                              0241
                                                                                                                                                                                                               THIS IS THE STEP SIZE OF DEMONS
IHOP AND IMAX MUST BE RELATIVELY PRIME
       FUNCTION ENERGY (SPIN, IX, IMAX)
                                                                                                                                                              0244
                                                                                                                                                                                                              ISUM=IMAG=0
JSHIFT=1
                                                                                                                                                              0245
                                                                                                                                                                                                                                                                                                                                                                    0343
0344
0345
0346
0347
0348
0349
0350
       MEASURES LATTICE ENERGY
       CHANGE DIMENSION OF SPIN IF CHANGE LATTICE SIZE
                                                                                                                                                              0248
                                                                                                                                                              0249
                                                                                                                                                              0250
0251
0252
       DIMENSION SPIN(128),B(6)
                                                                                                                                                                                                               LOCATE NBRS IN X- AND Y-DIRECTIONS
      N1=3

N2=2*1X+1

N3=1NAX-2*1X+1

N4=1NAX-1

JSNIFT=1

IE=0

D0 2 NFOW+1, IMAX

AOLD=SPIN(NFOW)

B(1)=SPIN(NFOW)

B(2)=SPIN(NFOW)

B(3)=SPIN(NFOW)

B(3)=SPIN(NFOW)+JSNIFT)

C=SHIFT(B(5),59)

B(6)=SNIFT(C,JSNIFT+1)

N1=N1+1

N2=N2+1
                                                                                                                                                                                                               NBR(1)=3
NBR(2)=2*1X+1
NBR(3)=1MAX-2*1X+1
NBR(4)=1MAX-1
                                                                                                                                                                                                                                                                                                                                                                     0351
0352
0353
0354
0355
                                                                                                                                                              0253
                                                                                                                                                              0254
0255
0256
                                                                                                                                                                                                               START SIMULATION
                                                                                                                                                              0257
                                                                                                                                                                                                          1 DP1=COMPL(DMN1)
DP2=XOR(DMN1,DMN2)
                                                                                                                                                                                                                                                                                                                                                                     0356
0357
                                                                                                                                                              0258
                                                                                                                                                              0259
                                                                                                                                                              0260
                                                                                                                                                                                                              ACCEPT=AND(DMN1,DMN2)
OLD=SPIN(NROW)
                                                                                                                                                                                                                                                                                                                                                                     0358
0359
                                                                                                                                                              0261
0262
                                                                                                                                                                                                      OLD=SPIN(NROW)

DO 2 M-1.4

SNBR(M)=SPIN(NBR(M))

NBR(M)=HBR(M)+1HOP

IF (MBR(4).LE.IMAX)GOTO 4

NBR(1)=MBR(3)

NBR(3)=MBR(1)

NBR(1)=MBR(3)

NBR(2)=MBR(1)

NBR(1)=NBRONE-IMAX

IF (MBR(4).GT.IMAX)GOTO 3

4 SMBR(5)=SPIN(NOWALSHIFT)

SNBR(6)=SHIFT(SNBR(5),1)

IF (JSMIFT.LE,-1)SNBR(6)=SHIFT(SNBR(6),58)

JSHIFT=-JSHIFT

DO 5 NEBR=1,6

C-XOR(DLD_SNBR(NEBR)

ACCEPT=XOR(ACCEPT,AND(C,DP1,DP2))

DP2=XOR(DP2,AND(C,DP1))

5 DP1=XOR(DP1,C)

ACCEPT CHANGES WHERE APPLICABLE AND SCRAMBLE DEMONS

SPIN(NROW)=XOR(OLD_ACCEPT)

DMN1=SHIFT(OR(AND(DMN1,COMPL(ACCEPT)),AND(DP2,ACCEPT)),27)

DMN2=SHIFT(OR(AND(DMN1,COMPL(ACCEPT)),AND(DP2,ACCEPT)),23)

THE NEXT THO LINES MEASURE DEMON ENERGY AND MAGNETIZATION
                                                                                                                                                                                                                                                                                                                                                                     0360
                                                                                                                                                              0263
                                                                                                                                                                                                                                                                                                                                                                     0361
0362
0363
0364
0365
                                                                                                                                                              0264
                                                                                                                                                              0265
0266
0267
      N1=N1+1
N2=N2+1
N3=N3+1
N4=N4+1
IF(N4.LE.IMAX)GOTO 1
                                                                                                                                                                                                                                                                                                                                                                     0366
0367
                                                                                                                                                              0268
                                                                                                                                                              0269
0270
                                                                                                                                                                                                                                                                                                                                                                     0368
                                                                                                                                                              0271
                                                                                                                                                                                                                                                                                                                                                                     0369
       N5=N4
N4=N3
N3=N2
                                                                                                                                                                                                                                                                                                                                                                     0370
0371
                                                                                                                                                              0272
                                                                                                                                                                                                                                                                                                                                                                     0372
       N2=N1
                                                                                                                                                              0275
                                                                                                                                                                                                                                                                                                                                                                     0373
       NI=NS-IMAY
                                                                                                                                                              0276
                                                                                                                                                                                                                                                                                                                                                                     0374
0375
                                                                                                                                                             0277
0278
0279
       JSHIFT=-JSHIFT
                                                                                                                                                                                                                                                                                                                                                                     0376
      DO 2 NBR=1,6
IE=IE+IBCOUNT(XOR(AOLD,B(NBR)))
                                                                                                                                                              0280
                                                                                                                                                                                                                                                                                                                                                                     0378
0379
                                                                                                                                                             0281
0282
       ENERGY= IE/(IMAX*180.)
                                                                                                                                                                                                                                                                                                                                                                     0380
                                                                                                                                                                                                                                                                                                                                                                     0381
0382
0383
0384
                                                                                                                                                              0283
       RETURN
END
                                                                                                                                                              0284
                                                                                                                                                                                                             THE NEXT TWO LINES MEASURE DEMON ENERGY AND MAGNETIZATION ISUM-ISUM-ISUM-ISUM-(OMNI)+2*1800mm(omni) imag=imag+ibcount(spin(nrow))
                                                                                                                                                                                                                                                                                                                                                                    0385
0386
0387
0388
                                                                                                                                                              0287
                                                                                                                                                              0288
      FUNCTION AMIX(DMN)
                                                                                                                                                                                                              NROW=NROW+IHOP
IF(NROW.LE.IMAX)GOTO 1
NROW=NROW-IMAX
IF(NROW.NE.1)GOTO 1
                                                                                                                                                                                                                                                                                                                                                                    0389
0390
0391
                                                                                                                                                              0292
      PERMUTES BITS SEMI-RANDOMLY
                                                                                                                                                             0293
0294
0295
0296
     L=INT(30*RANF())
P1=MASK(L).AND.DMN
P2=MASK(L).AND.SHIFT(DMN,L)
P3=(.NOT.MASK(2*L)).AND.DMN
                                                                                                                                                                                                                                                                                                                                                                     0392
                                                                                                                                                                                                                                                                                                                                                                    0393
0394
0395
0396
0397
                                                                                                                                                              0297
      AMIX=SHIFT(P2.OR.SHIFT(P1,60-L).OR.P3,INT(60*RANF()))
                                                                                                                                                             0300
      RETURN
END
```

TEST RUN OUTPUT

•	SUBROUTINE_CORX(SPIN,IMAX,N,IC)	0400 0401	LATTICE SIZE: 8 X 8 X 120
*	COUNTS ANTIPARALLEL SPINS SEPARATED BY N SITES IN THE X DIRECTION AND PLACES RESULTS IN IC	0401 0402 0403 0404	ELATT= .647222222222 EDEM= .007638888888889 ETOT= .6548611111111
*	IF N EXCEEDS IX, SEPARATION DEVELOPS COMPONENT IN Y DIRECTION	0405 0406	
*	DIMENSION SPIN(128),N(3),IC(3),NBR(3) CHANGE DIMENSION OF SPIN IF REQUIRED	0407 0408 0409 0410 0411	AVERAGE OVER 10 ITERATIONS,EACH WITH 10 SWEEPS RUNNING AT .1299052774019 MFLIPS BETA= .2224865020859 SISJ= .351177992079 MAGNETIZATION=01216927083333
1	IC(1)=IC(2)=IC(3)=0 D0 NROW=1,IMAX D0 M=1,3 NBR(M)=NROW+N(M)*2 IF (MBR(M).GT.IMAX)NBR(M)=NBR(M)-IMAX IC(M)=IC(M)*IBCOUNT(XOR(SPIN(NROW),SPIN(NBR(M)))) RETURN END	0412 0413 0414 0415 0416 0417 0418 0419	AVERAGE OVER 10 ITERATIONS, EACH WITH 10 SWEEPS RUNNING AT .1190882307334 MFLIPS BETA= .2201331059427 SIS.J= .3512470296224 MAGNETIZATION= .04859635416667 CORR(IX/4)= .1951041666667 CORR(IX/2)= .1347916666667 CORR(IX/2,11/2)= .1169791666667
* *	SUBROUTINE_CORZ(SPIN,1MAX,N,IC) COUNTS ANTIPARALLEL SPINS SEPARATED BY N SITES IN THE Z DIRECTION AND PLACES RESULTS IN IC	0421 0422 0423 0424 0425 0426 0427 0428	AVERAGE OVER 10 ITERATIONS, EACH WITH 10 SWEEPS RUNNING AT .1193658688219 MFLIPS BETA= .2213917811617 SISJ= .351210015191 MAGNETIZATION= .061984375 CORR(IX/4)= .1896875
*	ONLY EVEN VALUES OF N ARE CONSIDERED HERE DIMENSION SPIN(128),N(3),IC(3),SNBR(3) CHANGE DIMENSION OF SPIN IF REQUIRED	0429 0430 0431 0432	CORR(IX/2)= .1297916666667 CORR(IX/2,IY/2)= .1181770833333
	IC(1)=IC(2)=IC(3)=0 DO 1 NROW=1,IMAX DO 1 M=1,3 SNBR(M)=SHIFT(SPIN(NRON),N(M)/2)	0433 0434 0435 0436 0437 0438	AVERAGE OVER 10 ITERATIONS, EACH WITH 10 SWEEPS RUNNING AT .1227425283682 MFLIPS BETA= .2216398346272 SISJ= .3512027452257 MAGNETIZATION= .001078124999999 CORR(IX/4)= .19614583333333
	I IC(M)=IC(M)+IBCOUNT(XOR(SPIN(NROW),SNBR(M)))	0439 0440	CORR(1X/2)= .1433854166667 CORR(1X/2.1Y/2)= .1174479166667
	RETURN END	0441 0442	AVERAGE OVER 10 ITERATIONS, EACH WITH 10 SWEEPS RUNNING AT .121769462502 MFLIPS BETA= .2212017631939 SISJ= .3512155897352 MAGNETIZATION=1140026041667 CORR(IX/4)= .198489583333 CORR(IX/2)= .1356770833333 CORR(IX/2)= .1356770833333 CORR(IX/2)= .1197395833333
			*** AVERAGES AFTER DISCARDING FIRST BATCH *** AV. BETA= .2210916212314 +/0003318529697922 AV. MAG.=0005859374999986 +/04000005333508 AV. CORR(IX/4)= .1948567708333 +/001862828817412 AV. CORR(IX/2)= .1359114583333 +/002808035615709 AV. CORR(IX/2,IY/2)= .1180859375 +/0006037980047396 CORR(IX/4)/CORR(IX/2)= 1.43496114271 +/022604573658 CORR(IX/2)/CORR(IX/2,IY/2)= 1.151123951271 +/02578625876771